

Tooratrs romics

- Wisconsin Retirement System

Operation

- Wisconsin Retirement System Overview (assets, contributions, dividends)
- Actuarial Projection Summary

Questions

- How much retiree purchasing power loss is tolerable?
- How much variation in employer and employee contribution rates is tolerable?
- What happens if another 2008 depletes the dividend reserve?

WRS Operation

- Benefits
- Plan Governance
- ETF Board Role
- SWIB Role
- WRS Accounts and Reserves
- Actuarial Valuation of WRS
- Sharing Asset Experience
- Dividend Reserve Depletion

WRS Overview

Covered Population at 12/31/2014

Financial Information

	Number	Total \$ Millions	Average		Type	
Retirees	185,605	$\$$	4,489	$\$$	24,185	Annual Benefit
Active Members	256,100		13,037		50,907	Annual Pay
Inactive Members	154,286		2,093		13,564	Money Purchase Balance
Total	$\mathbf{5 9 5 , 9 9 1}$					

- Core Fund
- Diversified Portfolio
- 5 Year Smoothing through Market

Recognition Account

- Variable Fund
- Equity Portfolio
- Marked to Market each year

WRS Benefits

- Hybrid Plan

Defined Benefit: 1.6\% x FAC x Service (Most participants)
Not less than twice value of member account (A form of employer match)

- Adjustments are made to the above for members participating in Variable.

WRS Contributions

- Four rate Groups: General, Executive,

Protective with and without Social
Security.

- Actuarial Valuation determines contributions by rate group.
- General and Executive participants split cost equally with employers.
- Protective participants pay the same rate as General participants and employers pay the difference.

WRS Accounts and Reserves

- Retired Reserve: Intended to hold exactly the right amount of money so that IF
- each person lives exactly the right number of years,
- and gets exactly the same benefit each year
- and the reserve earns exactly 5\% each year,
- Then the reserve will be exhausted the day the last person dies.
- Retirees share in investment gains, but also share in investment losses. Prior dividends can be reduced if less than 5% is credited to the Core Annuity Division.
- Only dividends can be reduced. The original core benefit is protected.
- The present value of the excess of total core benefits over original benefits is called the "Dividend Reserve", although there is no formal definition of such a reserve.

Dividend Reserve

- A positive dividend reserve means that retirees are getting some inflation protection, but also provides a means by which the effect of investment losses on employer rates can be dampened.
- A $\$ 0$ dividend reserve means that retirees have lost all inflation protection and one of the shock absorbers on employer rates is gone.

Dividend Reserve Depletion

- The probability of such an event is low. Even 2008 did not produce depletion.
- But low is not zero, and there are people who believe the stock market is currently in a bubble.
- The following slides explore in general terms what a deficit in the retiree reserve means for the System.

Liability Attributable to Dividends

Valuation	Liability for Dividend Remaining (billions)	
$12 / 31 / 2009$	$\$ 8.1$	
$12 / 31 / 2010$		7.2
$12 / 31 / 2011$		6.4
$12 / 31 / 2012$		4.5
$12 / 31 / 2013$	3.0	
$12 / 31 / 2014$		4.6
$12 / 31 / 2015(e s t)$	5.7	

Liability for
Dividend Adjustment
$\frac{\text { (billions) }}{\$(0.4)}$
2.0
1.3

12/31/2015(est)
5.7

- Liability for Dividend Remaining represents the value of all previously granted dividends
- If another market event similar to 2008 were to occur again, the complete depletion of the dividend would become a real possibility

WRS Projections

Study Objectives

- Review emerging demographic trends
- Perform stochastic projections
- Perform various deterministic projections
- Evaluate worst case scenarios
- Investigate probability of depleting the dividend reserve
- Investigate probable range of contribution rates

Present \& Future Actives

The present population has a "half life" of about 10 years.

Retiree Population Present and Future

Projected Retiree Population

Projected Core Trust Fund Assets (\$Billions)

Projected Net External Cash Flow* Valuation Assumptions

Year	\$ (Millions)	\% of Assets	\% of Payroll
2015	$\$(2,557)$	$(3.1) \%$	$(18.9) \%$
2025	$(4,828)$	$(4.0) \%$	$(25.6) \%$
2035	$(7,015)$	$(4.4) \%$	$(26.6) \%$
2045	$(8,460)$	$(4.0) \%$	$(23.0) \%$
2055	$(11,185)$	$(3.9) \%$	$(22.2) \%$
2065	$(15,195)$	$(3.9) \%$	$(22.0) \%$

*Contribution income minus benefit payout.

Projected Contributions and Benefits as a \% of Active Payroll

Monte Carlo Simulations

- Based on 10,000 random trials
- Valuation Assumptions held constant
- Assumes seven sets of expected return/standard deviations
Scenario 1-5.0\%/9.3\%
Scenario 2-6.0\%/11.9\%
Scenario 3-7.0\%/15.9\%

Current
Allocation

Scenario 4-7.2\%/16.8\%
Scenario 5-8.0\%/20.6\%
Scenario 6-9.0\%/25.9\%
Scenario 7-10.0\%/32.3\%

Contribution as a \% of Payroll Scenario 2 - 6.0\%ER,11.9\%SD

 $\begin{array}{llllllllllll}\text { 25th Percentile } & 13.9 \% & 13.6 \% & 13.7 \% & 13.8 \% & 14.0 \% & 14.4 \% & 14.8 \% & 15.1 \% & 15.3 \% & 15.5 \% & 15.6 \%\end{array}$

75th Percentile	13.9%	13.6%	13.4%	13.0%	12.8%	12.6%	12.6%	12.6%	12.7%	12.9%

Dividend Rates
 Scenario $2-6.0 \%$ ER,11.9\%SD

5th Percentile	-1.3%	-1.3%	-3.0%	-4.7%	-5.2%	-3.8%	-3.3%	-2.9%	-2.5%	-2.4%	-2.2%
25th Percentile	1.0%	1.4%	0.0%	-1.4%	-1.5%	-1.0%	-0.9%	-0.7%	-0.6%	-0.5%	-0.4%
Median	2.6%	3.3%	2.1%	0.8%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
75th Percentile	4.1%	5.2%	4.2%	3.1%	3.1%	2.6%	2.4%	2.2%	2.1%	2.0%	1.9%
95th Percentile	6.5%	8.1%	7.3%	6.3%	6.4%	5.3%	4.6%	4.4%	4.1%	3.8%	3.6%

Contribution rate summary under alternate scenarios - median

GRS

Dividend rate summary under alternate scenarios - median

Discussion of Dividend

Probability that Dividend will be Depleted by Year

		Expected ROR	Standard Deviation	Year					
		1		5	10	20	50		
CurrentAllocation	1		5.0\%	9.3\%	0.0\%	4.3\%	11.4\%	18.3\%	30.5\%
	2	6.0\%	11.9\%	0.0\%	7.9\%	11.1\%	8.3\%	3.2\%	
	3	7.0\%	15.9\%	0.0\%	12.0\%	12.2\%	6.1\%	0.8\%	
	4	7.2\%	16.8\%	0.0\%	12.8\%	12.6\%	6.0\%	0.7\%	
	5	8.0\%	20.6\%	0.1\%	15.9\%	14.0\%	5.9\%	0.5\%	
	6	9.0\%	25.9\%	0.4\%	19.7\%	16.4\%	6.8\%	0.5\%	
	7	10.0\%	32.3\%	1.4\%	23.2\%	19.7\%	8.7\%	0.8\%	

Discussion of Dividend

Probability of Negative Dividend by Year

		Expected ROR	Standard Deviation	Year					
		1		5	10	20	50		
Current Allocation	1		5.0\%	9.3\%	7.9\%	50.2\%	56.0\%	54.9\%	54.4\%
	2	6.0\%	11.9\%	13.8\%	40.6\%	34.0\%	30.1\%	30.1\%	
	3	7.0\%	15.9\%	18.9\%	36.6\%	24.6\%	19.8\%	20.5\%	
	4	7.2\%	16.8\%	19.8\%	36.1\%	23.4\%	18.9\%	19.5\%	
	5	8.0\%	20.6\%	23.5\%	35.2\%	20.9\%	16.1\%	16.8\%	
	6	9.0\%	25.9\%	26.7\%	35.4\%	19.5\%	14.8\%	15.5\%	
	7	10.0\%	32.3\%	29.6\%	36.6\%	20.0\%	15.0\%	16.0\%	

Discussion of Dividend

Worst Case Scenario of Cumulative Dividend Percent (\% of Floor Benefit that is funded)

		Expected ROR	Standard Deviation	Year					
		1		5	10	20	50		
$\begin{gathered} \text { Current } \\ \text { Allocation } \end{gathered}$	1		5.0\%	9.3\%	109\%	93\%	85\%	80\%	68\%
	2	6.0\%	11.9\%	109\%	86\%	79\%	81\%	86\%	
	3	7.0\%	15.9\%	107\%	77\%	72\%	78\%	105\%	
	4	7.2\%	16.8\%	106\%	75\%	70\%	77\%	108\%	
	5	8.0\%	20.6\%	105\%	66\%	61\%	72\%	118\%	
	6	9.0\%	25.9\%	102\%	54\%	49\%	62\%	124\%	
	7	10.0\%	32.3\%	99\%	40\%	34\%	46\%	115\%	

Worst Case Scenario based on $1^{\text {st }}$ Percentile (i.e. 1% probability)

Dividend Observations

- The low risk scenarios are actually risky in the sense that, for example, 5% expected return has much higher chance of dividend depletion in later years than higher risk scenarios
- Must balance short and long term volatility
- Consider probability of dividend depletion
- Consider level of worst case scenario that is acceptable

Combination of all Scenarios

At least with respect to the 2025 outcome, there is a much narrower range on the worse results than on the better results, indicating a potential justification for risk above the minimum illustrated. After scenario 4, the worse results degrade at a high rate. Also the worst case scenario for the retiree dividend pool fall below 70% for scenarios $1,5,6$ and 7 . So do 2, 3, and 4 comprise a "Goldilocks Zone?"

2015 Observations

- 2013 and 2014 results helped rebuild the dividend base somewhat
- 2015 investment results might reduce some of that cushion depending on measured return at December 31
- High expected return/volatility scenarios appear to result in nearer term dividend risk
- Low expected return/volatility scenarios appear to result in longer term dividend risk
- Target 'Goldilocks zone' that provides for positive return with appropriate downside protection
- This presentation shall not be construed to provide tax advice, legal advice or investment advice.
- Readers are cautioned to examine original source materials and to consult with subject matter experts before making decisions related to the subject matter of this presentation.
- This presentation expresses the views of the authors and does not necessarily express the views of Gabriel, Roeder, Smith \& Company.

- Introduction

August SWIB meeting

- Actuarial overview of WRS
- Focus: role of investment return in System operation (contribution rates, dividends)
October SWIB meeting
- Focus: Use stochastic projections to
- Evaluate worst case scenarios
- Investigate probability of depleting the dividend reserve
- Investigate probable range of contribution rates

Introduction

October SWIB meeting

- Observations from this study
- Pursuing lower risk/return alternatives may lead to undesirable WRS results
- Pursuing higher risk/return alternatives may lead to undesirable WRS results
Target 'Goldilocks zone' that provides for positive return with appropriate downside protection

Study Objectives

- Review emerging demographic trends
- Perform stochastic projections
- Perform various deterministic projections
- Evaluate worst case scenarios
- Investigate probability of depleting the dividend reserve
- Investigate probable range of contribution rates

WRS Population

Ratio of Active Members to Retirees

GRS

Female Life Expectancy

Present \& Future Actives

The present population has a "half life" of about 10 years.

Retiree Population Present and Future

Projected Retiree Population

Projected Core Trust Fund Assets (\$Billions)

Observations

- In nominal terms, assets will increase by a factor of 4.7 during the projection period
- In real terms, assets need to grow a little to cover the peak of the baby boom retirements
- They may decline slightly after that

Observations

- A few present retirees will probably draw benefits for more than 50 years
- The number of retirees will increase by about 73% over the next 20 years
- Retiree liability will grow to about 60% of total liability
- Assets are about 6 times payroll

Maturing pension plans (like WRS) accumulate substantial assets relative to payroll

- Asset volatility increases dramatically for most plans
- Due to cost sharing nature of WRS, asset changes have been traditionally shared by:

Employees (through money purchase benefit)

- Employers (through contributions)
\rightarrow Retirees (through dividends)
- WRS Market Recognition account serves to further filter asset experience

Year	\$ (Millions)	\% of Assets	\% of Payroll
2015	$\$(2,557)$	$(3.1) \%$	$(18.9) \%$
2025	$(4,828)$	$(4.0) \%$	$(25.6) \%$
2035	$(7,015)$	$(4.4) \%$	$(26.6) \%$
2045	$(8,460)$	$(4.0) \%$	$(23.0) \%$
2055	$(11,185)$	$(3.9) \%$	$(22.2) \%$
2065	$(15,195)$	$(3.9) \%$	$(22.0) \%$

*Contribution income minus benefit payout.

Projected Contributions and Benefits as a \% of Active Payroll

Expected Benefit Payments as a \% of Active Payroll

Comments

- Liquidity needs (i.e., contributions less benefits) increase to over 4% of fund assets
- Benefit payout peaks at about 40\% of payroll - more than 3 times the level of contribution income
- Benefits as \% of payroll have increased more than expected primarily due to declines in active headcount and low wage inflation
- More than $2 / 3^{\text {rds }}$ of benefit payout will come from investment return

Stochastic Scenarios

Monte Carlo Simulations

- Based on 10,000 random trials
- Valuation Assumptions held constant
- Assumes seven sets of expected return/standard deviations

Scenario 1-5.0\%/9.3\%
Scenario 2-6.0\%/11.9\%
Scenario 3-7.0\%/15.9\%
Current Allocation
Scenario 4-7.2\%/16.8\%
Scenario 5-8.0\%/20.6\%
Scenario 6-9.0\%/25.9\%
Scenario 7-10.0\%/32.3\%

Contribution as a \% of Payroll Scenario 1 - 5.0\%ER,9.3\%SD

Contribution as a \% of Payroll Scenario 2 - 6.0\%ER,11.9\%SD

$\begin{array}{llllllllllll}\text { 25th Percentile } & 13.9 \% & 13.6 \% & 13.7 \% & 13.8 \% & 14.0 \% & 14.4 \% & 14.8 \% & 15.1 \% & 15.3 \% & 15.5 \% & 15.6 \%\end{array}$

75th Percentile	13.9%	13.6%	13.4%	13.0%	12.8%	12.6%	12.6%	12.6%	12.7%	12.9%

Contribution as a \% of Payroll Scenario 3-7.0\%ER,15.9\%SD

5th Percentile	13.9%	13.6%	14.1%	14.6%	15.3%	16.1%	16.9%	17.3%	17.5%	17.6%	17.6%
25th Percentile	13.9%	13.6%	13.8%	13.9%	14.1%	14.5%	14.9%	15.1%	15.3%	15.4%	15.4%
Median	13.9%	13.6%	13.5%	13.3%	13.3%	13.4%	13.4%	13.5%	13.6%	13.6%	13.6%
75th Percentile	13.9%	13.6%	13.3%	12.8%	12.4%	12.1%	11.8%	11.7%	11.7%	11.7%	11.6%
95th Percentile	13.9%	13.6%	12.9%	12.0%	11.1%	10.2%	9.3%	8.8%	8.5%	8.4%	8.3%

Contribution as a \% of Payroll Scenario 4-7.2\%ER,16.8\%SD

$\begin{array}{lllllllllll}\text { 5th Percentile } & 13.9 \% & 13.6 \% & 14.1 \% & 14.7 \% & 15.4 \% & 16.2 \% & 17.1 \% & 17.5 \% & 17.6 \% & 17.8 \%\end{array} \quad 17.7 \%$
$\begin{array}{lllllllllll}\text { 25th Percentile } & 13.9 \% & 13.6 \% & 13.8 \% & 13.9 \% & 14.1 \% & 14.5 \% & 14.9 \% & 15.2 \% & 15.3 \% & 15.4 \% \\ 15.4 \%\end{array}$
Median 13.9\% 13.6\% 13.5\% 13.3\% 13.2\% 13.3\% 13.4\% $13.4 \% ~ 13.5 \% ~ 13.5 \% ~ 13.5 \%$
$\begin{array}{lllllllllllllllll}\text { 75th Percentile } & 13.9 \% & 13.6 \% & 13.3 \% & 12.7 \% & 12.3 \% & 12.0 \% & 11.7 \% & 11.5 \% & 11.5 \% & 11.5 \% & 11.3 \%\end{array}$
$\begin{array}{llllllllllll}\text { 95th Percentile } & 13.9 \% & 13.6 \% & 12.9 \% & 11.9 \% & 10.9 \% & 10.0 \% & 9.0 \% & 8.4 \% & 8.1 \% & 7.9 \% & 7.7 \%\end{array}$

Contribution as a \% of Payroll Scenario 5 - 8.0\%ER,20.6\%SD

5th Percentile	13.9%	13.6%	14.3%	14.9%	15.7%	16.7%	17.7%	18.1%	18.2%	18.3%	18.2%
25th Percentile	13.9%	13.6%	13.8%	14.0%	14.2%	14.7%	15.1%	15.3%	15.4%	15.4%	15.3%
Median	13.9%	13.6%	13.5%	13.3%	13.1%	13.2%	13.1%	13.1%	13.1%	13.1%	12.9%
75th Percentile	13.9%	13.6%	13.2%	12.6%	12.0%	11.5%	11.0%	10.7%	10.6%	10.4%	10.2%
95th Percentile	13.9%	13.6%	12.7%	11.5%	10.2%	9.0%	7.6%	6.7%	6.1%	5.8%	5.5%

Contribution as a \% of Payroll Scenario 6-9.0\%ER,25.9\%SD

$\begin{array}{lllllllllllllll}\text { 5th Percentile } & 13.9 \% & 13.6 \% & 14.4 \% & 15.3 \% & 16.3 \% & 17.4 \% & 18.6 \% & 19.0 \% & 19.1 \% & 19.1 \% & 19.0 \%\end{array}$

$\begin{array}{llllllllllll}\text { 75th Percentile } & 13.9 \% & 13.6 \% & 13.1 \% & 12.3 \% & 11.6 \% & 10.8 \% & 10.1 \% & 9.7 \% & 9.3 \% & 9.0 \% & 8.6 \%\end{array}$

95th Percentile	13.9%	13.6%	12.5%	10.9%	9.3%	7.5%	5.6%	4.2%	3.3%	2.7%

Contribution as a \% of Payroll Scenario 7 - 10.0\%ER,32.3\%SD

5th Percentile	13.9%	13.6%	14.7%	15.7%	17.0%	18.4%	19.8%	20.2%	20.3%	20.2%
20.0%										
25th Percentile	13.9%	13.6%	13.9%	14.2%	14.7%	15.2%	15.7%	16.0%	16.0%	16.0%
15.8%										
Median	13.9%	13.6%	13.5%	13.1%	12.9%	12.8%	12.6%	12.5%	12.3%	12.1%
11.8%										
75th Percentile	13.9%	13.6%	13.0%	12.0%	11.1%	10.1%	9.1%	8.5%	8.0%	7.5%
95th Percentile	13.9%	13.6%	12.2%	10.3%	8.1%	5.7%	3.2%	1.2%	-0.2%	-1.2%

Dividend Rates

Scenario 2 - 6.0\%ER,11.9\%SD

5th Percentile	-1.3%	-1.3%	-3.0%	-4.7%	-5.2%	-3.8%	-3.3%	-2.9%	-2.5%	-2.4%	-2.2%
25th Percentile	1.0%	1.4%	0.0%	-1.4%	-1.5%	-1.0%	-0.9%	-0.7%	-0.6%	-0.5%	-0.4%
Median	2.6%	3.3%	2.1%	0.8%	0.9%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
75th Percentile	4.1%	5.2%	4.2%	3.1%	3.1%	2.6%	2.4%	2.2%	2.1%	2.0%	1.9%
95th Percentile	6.5%	8.1%	7.3%	6.3%	6.4%	5.3%	4.6%	4.4%	4.1%	3.8%	3.6%

Dividend Rates

Scenario 4-7.2\%ER,16.8\%SD

5th Percentile	-2.7%	-2.8%	-4.6%	-6.4%	-7.0%	-4.8%	-3.9%	-3.3%	-2.8%	-2.5%	-2.2%
25th Percentile	0.6%	0.9%	-0.3%	-1.6%	-1.6%	-0.8%	-0.5%	-0.2%	0.0%	0.1%	0.2%
Median	2.8%	3.7%	2.6%	1.6%	1.8%	1.8%	1.8%	1.9%	1.9%	1.9%	1.9%
75th Percentile	5.0%	6.4%	5.7%	4.8%	5.0%	4.4%	4.1%	3.9%	3.8%	3.7%	3.6%
95th Percentile	8.3%	10.6%	10.0%	9.3%	9.6%	8.1%	7.3%	6.9%	6.5%	6.2%	5.9%

Dividend Rates

Scenario 5 - 8.0\%ER,20.6\%SD

Dividend Rates
 Scenario 6 - 9.0\%ER,25.9\%SD

5th Percentile	-5.3%	-5.8%	-7.9%	-10.3%	-11.3%	-7.3%	-5.8%	-4.6%	-3.8%	-3.4%	-2.9%
25th Percentile	-0.3%	0.0%	-1.2%	-2.5%	-2.3%	-0.9%	-0.4%	0.1%	0.5%	0.8%	1.0%
Median	3.2%	4.2%	3.3%	2.5%	3.1%	3.0%	3.2%	3.4%	3.5%	3.5%	3.5%
75th Percentile	6.6%	8.4%	8.1%	7.4%	7.8%	7.1%	6.8%	6.5%	6.4%	6.2%	6.1%
95th Percentile	11.7%	15.0%	14.9%	14.5%	14.7%	12.8%	11.7%	11.1%	10.6%	10.2%	9.8%

Contribution rate summary under alternate scenarios - median

Comparison of contribution rates under alternate scenarios

Dividend rate summary under alternate scenarios - median

GRS

Comments on Monte Carlo Simulations

- Based on normal market fluctuations, there is a wide range of probable outcomes - even if the long-term average rate of return is exactly as assumed
- Market returns of last decade have been volatile asset returns my not be normally distributed.
- Maturing plans such as WRS are increasingly exposed to the effects of market volatility.
- The unique benefit structure of WRS enables it to deal with volatility to an extent not feasible in most public sector retirement systems.

Dividend Discussion

Dividend Discussion

- As of December 31, 2014, the total retiree liability was about $\$ 47.1$ billion.
- Of the $\$ 47.1$ billion, about $\$ 4.6$ billion (or 11%) is attributable to dividends with the remaining $\$ 42.5$ billion attributable to the current floor benefit.
- While retirees cannot fall below the floor benefit, it is possible the asset pool could fall below this level.
- Returns above 5% will help increase the 11% dividend pool and returns below 5% will erode it.
- Dividend erosion is not uniform - people who retired a long time ago lose a larger share of their current benefit than more recent retirees

Liability for Remaining Dividend (Billions)

Discussion of Dividend

Probability that Dividend will be Depleted by Year

		Expected ROR	Standard Deviation	Year					
		1		5	10	20	50		
Current Allocation	1		5.0\%	9.3\%	0.0\%	4.3\%	11.4\%	18.3\%	30.5\%
	2	6.0\%	11.9\%	0.0\%	7.9\%	11.1\%	8.3\%	3.2\%	
	3	7.0\%	15.9\%	0.0\%	12.0\%	12.2\%	6.1\%	0.8\%	
	4	7.2\%	16.8\%	0.0\%	12.8\%	12.6\%	6.0\%	0.7\%	
	5	8.0\%	20.6\%	0.1\%	15.9\%	14.0\%	5.9\%	0.5\%	
	6	9.0\%	25.9\%	0.4\%	19.7\%	16.4\%	6.8\%	0.5\%	
	7	10.0\%	32.3\%	1.4\%	23.2\%	19.7\%	8.7\%	0.8\%	

Discussion of Dividend

Probability of Negative Dividend by Year

		Expected ROR	Standard Deviation	Year					
		1		5	10	20	50		
Current Allocation	1		5.0\%	9.3\%	7.9\%	50.2\%	56.0\%	54.9\%	54.4\%
	2	6.0\%	11.9\%	13.8\%	40.6\%	34.0\%	30.1\%	30.1\%	
	3	7.0\%	15.9\%	18.9\%	36.6\%	24.6\%	19.8\%	20.5\%	
	4	7.2\%	16.8\%	19.8\%	36.1\%	23.4\%	18.9\%	19.5\%	
	5	8.0\%	20.6\%	23.5\%	35.2\%	20.9\%	16.1\%	16.8\%	
	6	9.0\%	25.9\%	26.7\%	35.4\%	19.5\%	14.8\%	15.5\%	
	7	10.0\%	32.3\%	29.6\%	36.6\%	20.0\%	15.0\%	16.0\%	

Discussion of Dividend

Worst Case Scenario of Cumulative Dividend Percent (\% of Floor Benefit that is funded)

		Expected ROR	Standard Deviation	Year					
		1		5	10	20	50		
$\begin{gathered} \text { Current } \\ \text { Allocation } \end{gathered}$	1		5.0\%	9.3\%	109\%	93\%	85\%	80\%	68\%
	2	6.0\%	11.9\%	109\%	86\%	79\%	81\%	86\%	
	3	7.0\%	15.9\%	107\%	77\%	72\%	78\%	105\%	
	4	7.2\%	16.8\%	106\%	75\%	70\%	77\%	108\%	
	5	8.0\%	20.6\%	105\%	66\%	61\%	72\%	118\%	
	6	9.0\%	25.9\%	102\%	54\%	49\%	62\%	124\%	
	7	10.0\%	32.3\%	99\%	40\%	34\%	46\%	115\%	

- The low risk scenarios are actually risky in the sense that, for example, 5% expected return has much higher chance of dividend depletion in later years than higher risk scenarios
Must balance short and long term volatility
Consider probability of dividend depletion
- Consider level of worst case scenario that is acceptable

Combination of all Scenarios

At least with respect to the 2025 outcome, there is a much narrower range on the worse results than on the better results, indicating a potential justification for risk above the minimum illustrated. After scenario 4, the worse results degrade at a high rate. Also the worst case scenario for the retiree dividend pool fall below 70% for scenarios $1,5,6$ and 7 . So do 2, 3, and 4 comprise a "Goldilocks Zone?"

2013 Observations

- WRS is still a maturing system
- Dividend base for retirees has declined rapidly and is very close to being depleted
- 2013 and 2014 are pivotal years to rebuild the dividend base to a broader cohort of retirees
- Few systems can withstand another '2008' market year in the near future without large increases in contributions
- Continue to investigate strategies to reduce downside risk - may involve a statutory change

2015 Observations

- 2013 and 2014 results helped rebuild the dividend base somewhat
- 2015 investment results might reduce some of that cushion depending on measured return at December 31
- High expected return/volatility scenarios appear to result in nearer term dividend risk
- Low expected return/volatility scenarios appear to result in longer term dividend risk
- Target 'Goldilocks zone' that provides for positive return with appropriate downside protection

Disclaimers

- This presentation shall not be construed to provide tax advice, legal advice or investment advice.
- Readers are cautioned to examine original source materials and to consult with subject matter experts before making decisions related to the subject matter of this presentation.
- This presentation expresses the views of the authors and does not necessarily express the views of Gabriel, Roeder, Smith \& Company.

Appendix

| Year | Present Actives | Future Actives | Year | Present Actives | |
| :---: | ---: | ---: | ---: | ---: | ---: | Future Actives

Retiree Population - Present and Future Year by Year Results

Year	Present Retirees	Future from Deferred	Future from Actives	Year	Present Retirees	Future from Deferred	Future from Actives
2014	185,605	-	-	2039	46,543	104,581	176,576
2015	175,108	17,031	8,890	2040	41,159	105,140	180,927
2016	169,893	20,754	17,396	2041	36,049	105,553	185,074
2017	164,850	24,677	26,011	2042	31,256	105,695	189,113
2018	159,906	28,969	34,646	2043	26,818	105,605	193,002
2019	155,027	33,195	43,289	2044	22,769	105,196	196,764
2020	150,296	37,541	51,828	2045	19,130	104,329	200,405
2021	145,613	42,367	60,220	2046	15,907	103,154	203,851
2022	140,962	47,078	68,432	2047	13,097	101,392	207,106
2023	136,228	52,157	76,424	2048	10,681	99,378	210,150
2024	131,365	57,626	84,182	2049	8,633	97,151	213,032
2025	126,379	62,820	91,722	2050	6,917	94,561	215,757
2026	121,266	67,653	99,108	2051	5,498	91,669	218,276
2027	116,027	72,286	106,310	2052	4,339	88,448	220,639
2028	110,659	76,449	113,323	2053	3,402	84,877	222,842
2029	105,150	80,286	120,149	2054	2,656	80,955	224,922
2030	99,504	83,892	126,747	2055	2,067	76,736	226,858
2031	93,735	87,251	133,159	2056	1,606	72,370	228,659
2032	87,859	90,489	139,364	2057	1,249	67,967	230,323
2033	81,899	93,457	145,330	2058	974	63,587	231,860
2034	75,888	96,497	151,099	2059	762	59,265	233,284
2035	69,863	98,999	156,726	2060	599	55,030	234,596
2036	63,867	100,813	162,079	2061	474	50,917	235,794
2037	57,947	102,236	167,132	2062	378	46,936	236,883
2038	52,156	103,592	171,945	2063	304	43,094	237,863

Approach	Theory	Impact on Dividends	Who Bears Cost?
Do Nothing	"Short Term" deficit will be made up by future Investment Return >5\%	No dividends paid until the "deficit" has been filled	Current and near retirees
Let Depletion Flow Through EAR	Fully fund retiree reserve with special reserve transfer, paid over EAR financing period	Dividends may resume very quickly	Participants and employers
Special Amortization	Amortize deficit over 5 years, charge interest at 5\% credit (retiree reserve earnings) $>5 \%$	No dividends paid until the "deficit" has been filled	Participants and employers

Unfunded Dividend Analysis

Do Nothing

- This course of action assumes that the deficit is a short-term phenomenon that will be made up by investment gains above 5% in the future.
- No dividends would be paid until the "deficit" has been filled.
- This method applies the full cost of the loss to present and near-term future retirees.
- Of course, the conditions that produced the deficit probably affected employer and participant contributions anyway.

Let It Flow Through the EAR

- This method fully funds the retiree reserve with a special reserve transfer.
- The deficit is thereby transferred to the active reserves and is financed over the EAR financing period.
- The method transfers almost the entire cost of the deficit to participants and employers.
- Dividends might resume very rapidly in such a circumstance, perhaps even the next year.

Special Amortization

- Set up a 5-year amortization of the deficit.
- Will affect both participant and employer rates.
- Charge the deficit with 5% interest.
- Credit the deficit with employer and participant amortization contributions and earnings on the retiree reserve above 5%.
- No dividends paid until deficit is paid off.
- This method shifts a portion, but not all of the cost back to employers and active participants.

Deficit Analysis

- Suppose the retiree core fund initially has $\$ 40$ billion in assets and liabilities and
- The entire dividend reserve has previously been used up and
- At the end of the year the fund has $\$ 36$ billion in assets and $\$ 40$ billion in liabilities and
- Going forward all assets earn 7.2\%
- How long will it take the assets to catch back up to the liabilities?

Deficit Analysis

- In this case, the fund would have $\$ 36$ billion in assets earnings 7.2% each year, 2.2% more than required interest.
- So, an annual payment of $2.2 \% \times \$ 36$ billion, which is $\$ 720$ Million, could be applied to the $\$ 4$ billion deficit.
- Of course, the deficit is also a debt bearing interest at 5%.
- The payoff schedule looks like this.

Deficit Payoff Schedule

Year	Beginning Balance	Interest (5\%)	Payment	Ending Balance		
1	$\$$	4,000	$\$$	200	$\$$	792
2	3,408	170	792	3,408		
2	2,786	139	792	2,786		
3	2,134	107	792	2,134		
4	1,448	72	792	1,448		
5	729	36	792	729		
6					(27)	

In this example, the deficit would be extinguished during the sixth year

- The payoff schedule is perhaps oversimplified.
- It assumes that reserve transfers and regular interest on the existing reserve assets covers benefit payments from the reserve.
- But for deficits on the order of 10%, it might not be too far off.

More Discussion

- If there were a 25% deficit, a similar calculation would suggest potential payoff in 30 years.
- That might be true, but the assumptions become questionable over such a time horizon.
- More sophisticated modeling would be required to provide a reliable answer.

